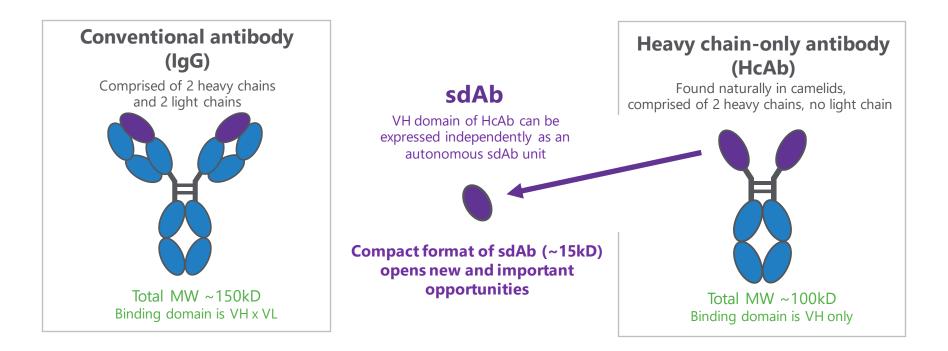
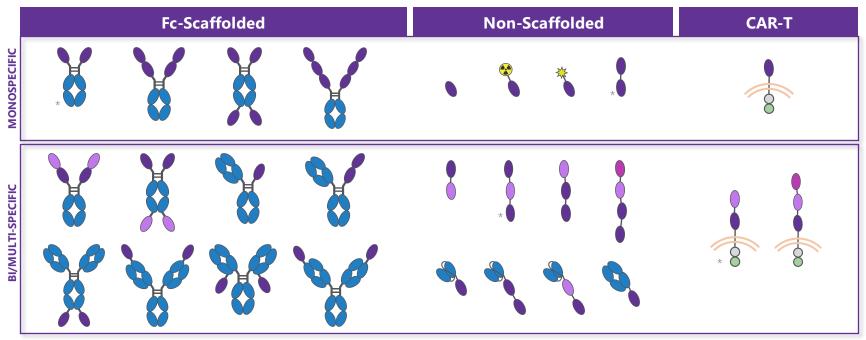
OmniAb

Omni*dAb*[™]:

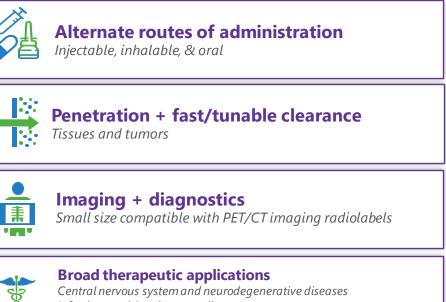

Heavy Chain-Only Transgenic Chickens Produce Human Antibodies with Robust Immune Repertoires and High-Affinity Binding

Christine N. Vuong, PhD Antibody Engineering & Therapeutics US December 14, 2023

What is a Single-Domain Antibody (sdAb)?


ALSO KNOWN AS V_HH ANTIBODIES OR NANOBODIES®

sdAbs Provide Modular Building Blocks


sdABs CAN BE ASSEMBLED INTO VARIOUS FORMATS TO "FIT THE BIOLOGY" OF AN APPLICATION

- Assembly into larger or custom formats unlocks versatility to "fit the biology"; also well-suited to bi/multi-specifics
- Small formats enable convenient routes of administration (inhalable & oral), penetration, and fast clearance, compatible with the decay half-life of radio-isotopes used in imaging, diagnostics, and radiotherapy

Opportunities for sdAbs in Medicine

Dee

Central nervous system and neurodegenerative a Infectious and Autoimmune diseases Cancer (especially bi/multi-specifics & CAR-T)

Unique physical properties of sdAbs can be leveraged for important applications

Clinical Landscape for Therapeutic sdAbs

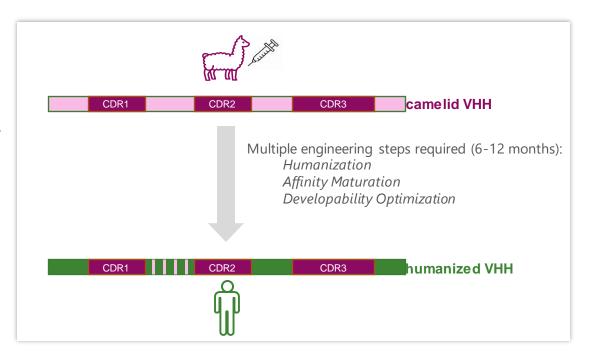
ROBUST AND GROWING CLINICAL PIPELINE OF SINGLE-DOMAIN ANTIBODIES

Clinical Phase	Number of VHH-based Drugs
Approved	4
Phase 3	2
Phase 2	8
Phase 1	10

Jin et al, Int. J. Mol. Sci. 2023: Clinicaltrials.gov: www.antibodysociety.org

- VHH-products comprise a growing segment of the Ab market
- 4 approved VHH-based drugs
- 20 VHH-based products in clinic
- Used to treat cancer, autoimmune, infectious diseases
- Various molecular formats:

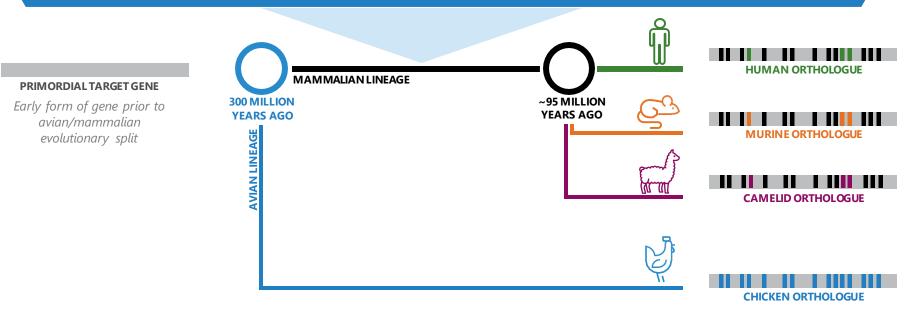
Tandem VHH-VHH, VHH-Fc, VHH-albumin, bi/multi-specific, CAR-T, VHH cocktails...



Currently approved VHH-based drugs: Cablivi, Caplacizumab EU 2018, US 2019 (Sanofi); ENWEIDA, Envafolimab China 2021 (Simcere); Nanozora, Ozoralizumab Japan 2022 (Sanofi); CARVYKTI, Ciltacabtagene autoleucel US 2022 (Janssen)

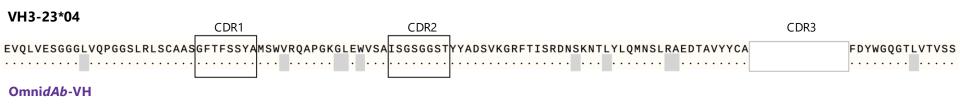
Current Discovery Strategy for Therapeutic sdAbs

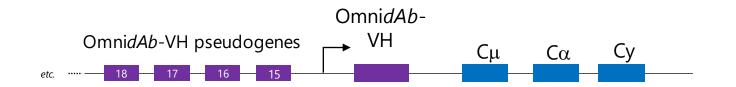
Current process requires large animal immunization, as well as engineering including humanization and optimization, which adds time and can increase risks


Camelid immune hosts may be limited by target homology, and recovered mAbs require humanization

Chicken Platforms: Powered by Evolution

GREATER EVOLUTIONARY DISTANCE YIELDS GREATER IMMUNOGENICITY AND MORE ANTIBODY DIVERSITY

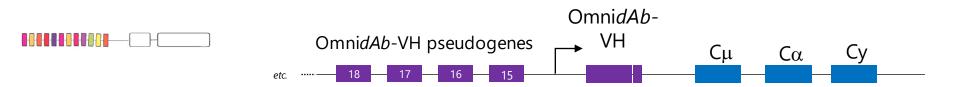




Ching et al. MAbs 2018

Omni*dAb*[™] **Platform: Transgene Design**

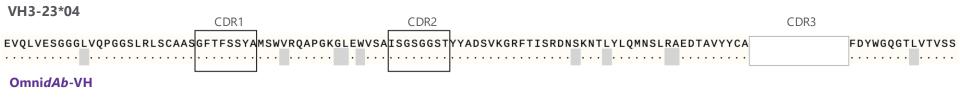
HUMAN VH3-23 WITH 10 STABILIZING MUTATIONS IN THE FRAMEWORKS

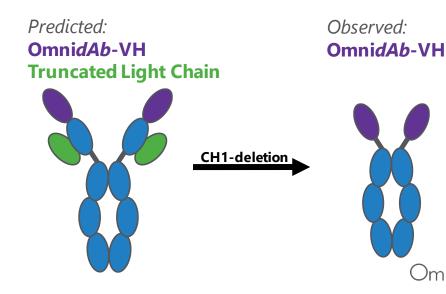


OmnidAb[™] Pseudogene Array: Diversity Through Gene Conversion STABILIZED FRAMEWORKS, CDR DIVERSITY

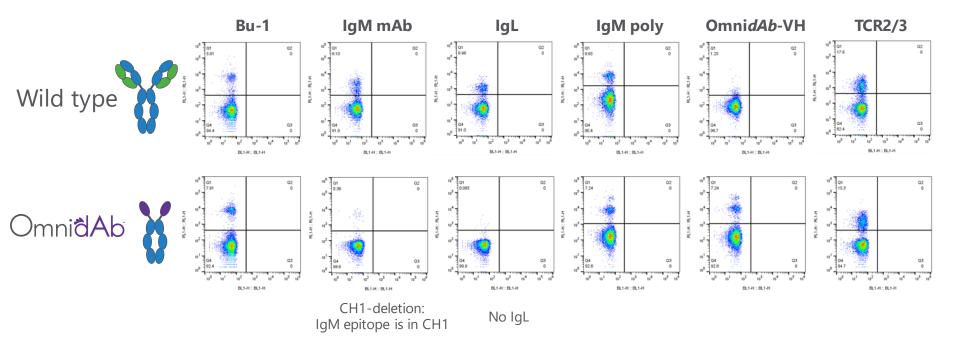
	Stabilizing mutations maintained in FRs	CDR1*	CDR2*	CDR3**
15	· · · · · · · · · · · · · · · · · · ·	– · · · – · <mark>D</mark> · <mark>Y</mark> · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
16	· · · · · · · · · · · · · · · · · · ·	- · · · - · <mark>N</mark> AW · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
17	· · · · · · · · · · · · · · · · · · ·	– · · <mark>V</mark> – · · <mark>NY</mark> · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
18	· · · · · · · · · · · · · · · · · · ·	<u> </u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
19	· · · · · · · · · · · · · · · · · · ·	- · · · - · DHY · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
20	· · · · · · · · · · · · · · · · · · ·	- · · S - DD · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	-YSSS·G·Y·····	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	$-\cdots$ $-$ DD \cdot T \cdots \cdot \cdot	••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	– – <mark>E</mark>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	- · · · - GY · P · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	- Y S I S · · NW · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
26		S S - GD · Y · · · · ·	· · · · · · · · · · · · · · · · · · ·	······································
				· · · · · · · · · · · · · · · · · · ·
28				· · · · · · · · · · · · · · · · · · ·

*From human VH3 germline genes


**From human VH3 somatic sequences


Gene conversion provides diversity to the CDRs and maintains the optimized single framework

Omni*dAb*[™] **Platform: sdAb VH and tLC Transgenes**

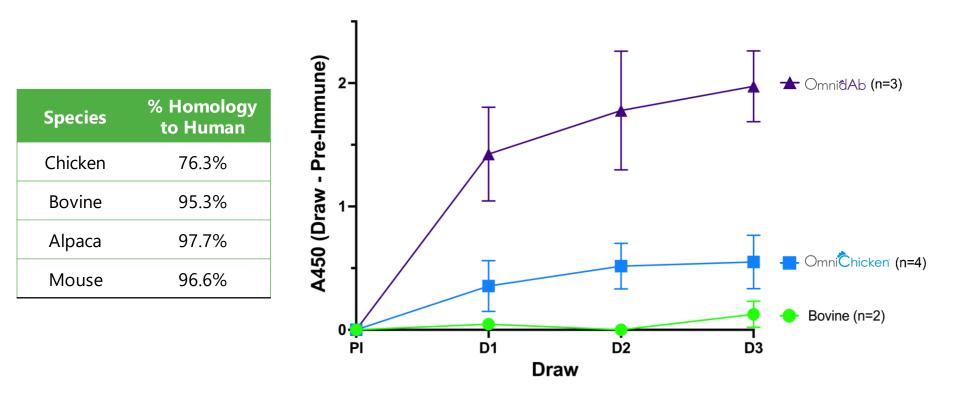


- Birds express VH, but no VL
- Spliced to WT chicken heavy chain constant region (Fc)
- Spontaneous CH1 deletion

)mniAb

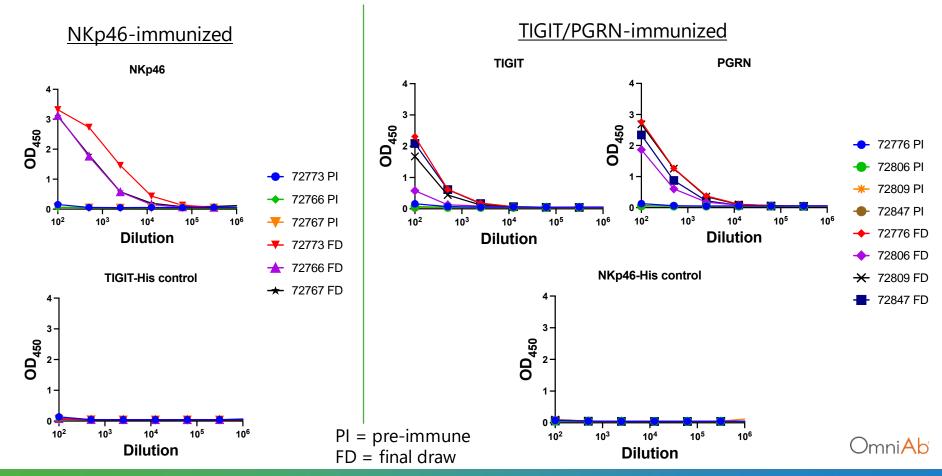
B Cell Development in Omni*d*Ab[™] Chickens

Robust B cell development in OmnidAb^{**} chickens

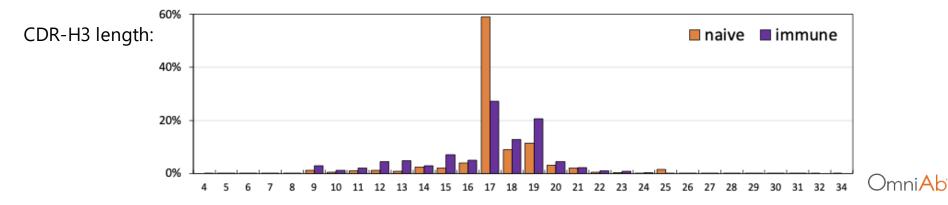

Omni*d***A***b*[™] **Immunizations**

THREE COHORTS: NKp46, TIGIT+PGRN COCKTAIL, Kv1.3

	NKp46	TIGIT PGRN	Kv1.3
Immunogen	Protein	Protein	Solubilized Protein Nanodiscs DNA mRNA-LNP
Omni <i>dAb</i>	3 birds	4 birds	13 birds
	2-3 boosts (4	(in process)	

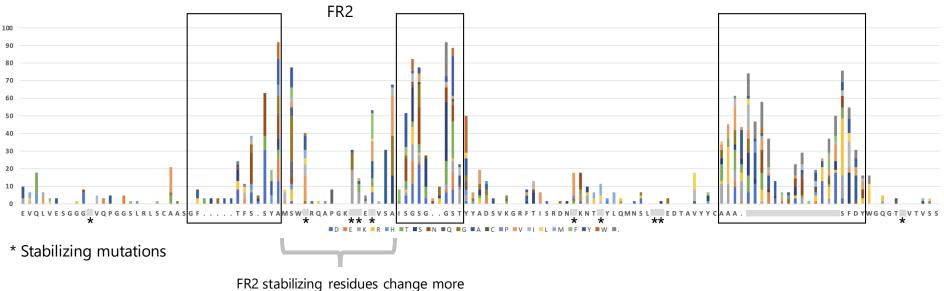

Preliminary Response Data to Kv1.3 Ion Channel

13


OmniAb

OmnidAb[™] Birds Raise Robust, Specific Immune Responses¹⁴

NGS: Diversity Increases Upon Immunization


	Bird ID:	72766	72767	72773	72776	72806	72809	72847
Naïve PBMC	# lineage:	176	50	163	247	315	500	45
	# unique seq:	19323	25764	14061	6565	9948	8855	17094
Immunized splenocyte	# lineage:	1270	2099	3490	5190	3252	3266	604
	# unique seq:	35240	23160	35890	30810	17693	29436	17551

Mutational Levels in Cloned sdAbs

DATA FROM PGRN, TIGIT, AND NKp46 CLONES. N = 62

frequently than other FR regions

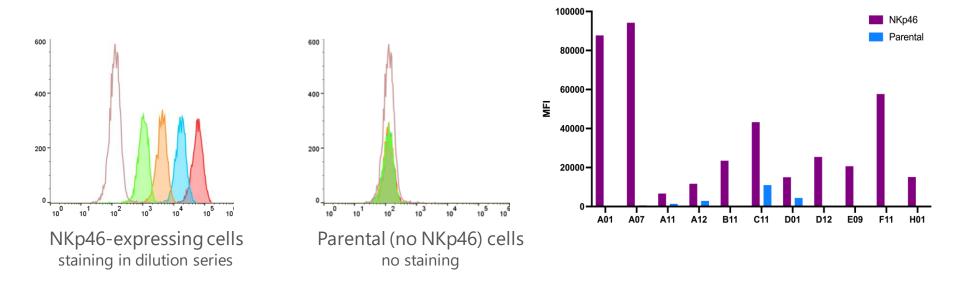
High sequence diversity observed in antigen-specific clones

Omni*dAb*[™] sdAbs are Antigen-Specific

sdAB-huFC SUPERNATANTS BIND TO EITHER TIGIT OR PROGRANULIN

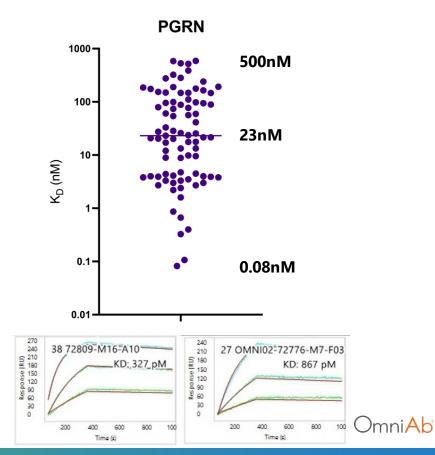
	Coat: TIGIT-I	Bio at 2 ug/mi	L										
	Detect: anti-HuFc-HRP at 1:5000												
		1	2	3	4	5	6	7	8	9	10	11	12
	Α	0.113	0.051	1.757	0.049	0.055	0.052	0.048	0.051	0.052	0.046	0.049	0.05
	В	0.07	0.091	0.048	0.053	0.045	0.047	0.083	0.046	0.047	0.046	0.047	0.062
TIGIT	с	0.058	0.049	0.051	0.056	0.049	0.047	0.044	0.052	0.053	0.046	0.046	0.053
11011	D	0.104	0.051	1.982	0.051	0.047	0.049	0.058	0.049	0.045	0.054	0.046	0.047
	E	0.063	0.05	0.056	0.047	0.053	0.058	0.053	0.049	0.049	0.051	0.073	0.051
	F	0.058	0.051	0.064	0.049	0.046	0.041	0.048	0.052	0.047	0.137	0.068	0.05
	G	0.059	0.048	0.056	0.056	0.055	0.049	0.071	0.077	0.045	0.049	0.049	0.05
	н	0.082	0.071	0.057	0.061	0.08	0.055	0.067	0.058	0.061	0.06	0.061	1.703
	Coat: PGRN-his at 2ug/ml												
	Detect: anti-HuFc-HRP at 1:5000												
		1	2	3	4	5	6	7	8	9	10	11	12
D	A	0.14	0.051	0.048	1.75	0.057	1.732	0.05	0.056	0.048	0.079	0.053	0.175
Progranulin	В	0.063	0.082	0.046	0.06	0.135	0.049	0.052	0.049	0.048	0.049	0.046	0.056
	с	0.066	0.047	0.048	0.052	0.059	0.061	0.047	0.047	0.048	0.602	0.059	1.556
	D	1.62	0.048	0.048	0.047	0.101	0.048	0.046	0.047	0.05	1.418	1.543	0.052
	E	1.749	0.053	0.053	1.122	0.046	0.888	0.046	0.049	0.046	1.689	0.06	0.055
	F	0.071	0.048	1.682	0.047	0.046	1.78	0.048	0.063	1.528	0.065	0.051	0.054
	G	0.052	0.048	1.723	0.047	1.69	0.047	0.048	0.06	0.24	1.842	1.013	1.689
	н	0.061	0.063	0.051	0.881	0.067	0.155	1.68	1.613	1.752	0.057	0.392	0.083

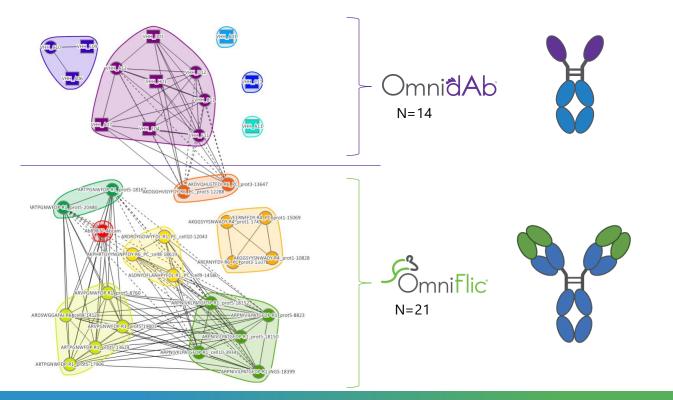
Yield: ~1 mg/ml


Antibody response is mono-specific

Specific Cell Binding to NKp46-Expressing Cells

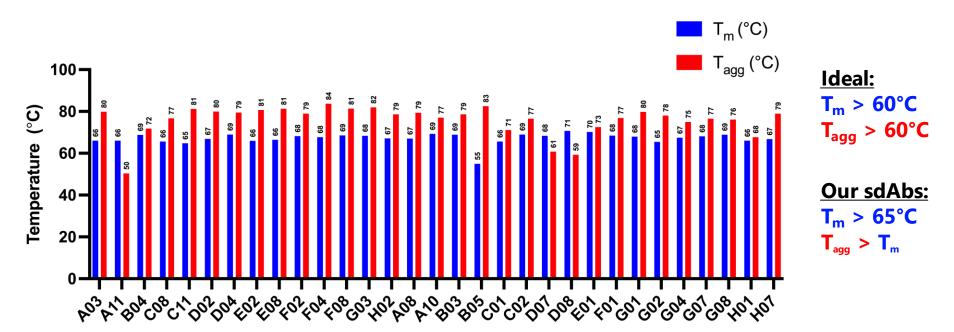

Representative OmnidAb[™] clone in flow cytometry


Clones show specific binding


Omni<mark>Ab</mark>

Omni*d***A***b*[™] **sdAbs Have High Affinity**

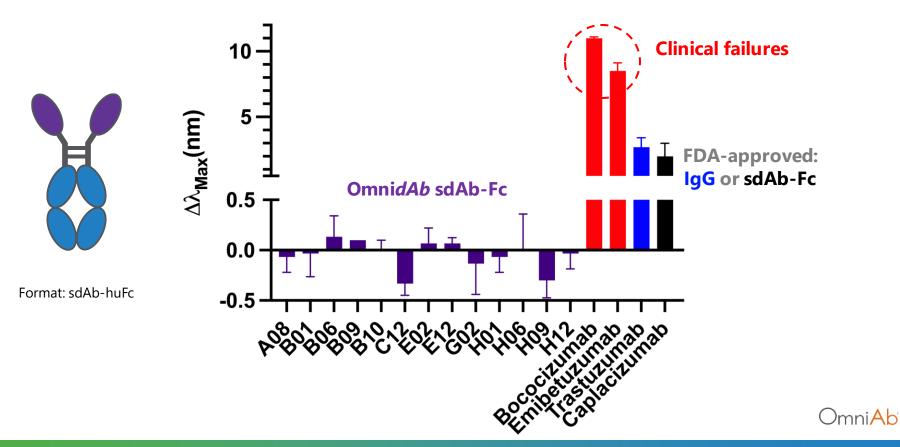
Preliminary Binning Results on NKp46



OmnidAb[™] has unique epitope coverage against NKp46

Developability Assessment

PHYSICAL PROPERTY CHARACTERIZATION OF NKp46 sdABs PANEL



OmnidAb[™] clones meet "clinical grade" developability criteria

Omni*dAb*[™] **sdAbs Show No Self-Association**

AC-SINS CHARACTERIZATION OF PGRN sdABs PANEL

Sequence of Non-Germline Framework Positions

POTENTIAL FOR IMMUNOGENICITY

OmnidAb vs.

other clinical-stage molecules:

		CDR1	CDR2		CDR3
VH3-23-04 D-JH4	EVQLVESGGGLVQPGGSLRLSCAAS	GFTFSSYA <mark>MSWVRQA</mark> P	GKGL EWV SAII SG SGG STYYAD SVKGR	FT I SRDNSKNTLYLQMNSLRAEDTAVYYCAKGT	WNTFFDYWGQGTLVTVSS
Omni <i>dAb</i>	• • • • • • • • • • • • • • • • • • • •			· · · · · · · · · · · · · · · · · · ·	
Caplacizumab		• • R • • • <mark>YNP</mark> • G • F • • • •	$\cdots \mathbf{R} \cdot \mathbf{L} \cdot \mathbf{A} \cdot \cdots \mathbf{RT} \cdot \cdots \cdot \mathbf{P} \cdot \cdots \mathbf{E} \cdot \cdot$	· · · · · · · A · RMV · · · · · · · · · · · · · · · · · · ·	
Envafolimab	-				TCTLVTSSGA · Q · · · · · · · · · · · ·
Ozoralizumab				· · · · · · · A · · · · · · · · · · · ·	GFNR·····
Ozoralizumab-2	· · · · · · · · · · · · · · · · · · ·		5 5 5 5	·····A·T····P······TI·GS	
Erfonrilimab-2	Q · · · · · · · · · · · · · · · · · · ·				TCLGGS·SGP·G······
Gefurulimab	· · · · · · · · · · · · · · · · · · ·			· · · · · · · A · · · S · · · · · · · ·	
Ozekibart Enristomig-2	· · · · · · · · · · · · · · · · · · ·			······································	
Enristomig				· · · · · · · · · · · · · · · · · · ·	
Tarperprumig	0 · · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
Sonelokimab2	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
Gefurulimab-2		• • RAH • D • • • A • F • • • •	· QER · F · AG · GW · · · D · L · · · · · R · ·	· · N · · · · · · · · · · · · · · · · ·	- IYSSMRSDSY · · · · · · · · · · · · · · · · · · ·
Sonelokimab1	D · · · · · · · · · · · · · · · · · · ·	• • R • • • • • • VVG • F • • • •	· · ER · FIG · · · · · E · I · · · V · E · · ·	· · · · · · · · · · · · · · · · · · ·	-GYLRFGRSE · · · · · · · · · · ·
Isecarosmab	D · · · · · · · · · · V · · · · · · · ·	• • 🖪 • 🔽 • • • • • 🔓 • F • • • •	$\cdot \cdot \mathbf{ER} \cdot \mathbf{F} \cdot \mathbf{AG} \cdot \cdot \mathbf{R} \cdot \mathbf{AER} \cdot \cdot \cdot \mathbf{V} \cdot \cdot \mathbf{L} \cdot \cdot \cdot$	· · · · · · · · · · · · · · · · · · ·	-NRIF-SREEYA
Lunsekimig1	D · · · · · · · · · · V · · · · · · · ·	• • <mark>R</mark> • • • • • R • G • F • • • •		· · · · · · · · · · · · · · · · · · ·	
Rimteravimab	D · · · · · · · · · · · · · · · · · · ·	• • R • • • E • • • G • F • • • •			-TVVSE · DYDY · · · · · · · · · · · · ·
Lunsekimig2	· · · · · <u>·</u> · · · · · · · · · · · · ·			······································	
Tarperprumig-2	· · · · · <mark>L</mark> · · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
Letolizumab	· · · · · E · · · · · · · · · · · · · · · · · · ·		$\cdots \cdots \cdots \cdots \mathbf{G} \cdot \mathbf{E} \cdot \mathbf{P} \cdot \mathbf{DV} \cdots \cdots \cdots \cdots$	· · · · · · · · · · · · · · · · · · ·	KDAKS · · R · · · · · · · · · ·
Porustobart	•••••••••••••••••••••••••••••••••••••••	· · · · <mark>V</mark> · KNY · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	RAVPHS	$SS \cdot \cdot I \cdot \cdot \cdot \cdot M \cdot \cdot \cdot \cdot$

OmnidAb[™] is predicted to have low immunogenicity

OmnidAb

Omni*dAb*[™] transgenic chickens:

Express an optimized single domain human framework -no non-canonical cysteines

Produce robust titers upon immunization and develop functionally diverse repertoires of sdAb sequences

Generate high-affinity, antigen-specific mAbs that target various epitopes

Exhibit favorable developability and high expression in mammalian cells

Acknowledgements to the OmniAb Team:

Philip Leighton

Darlene Pedersen

Kevin Reynolds

Robyn Cotter

Yulei Zhang

Abheepsa Gupta

Dev Srivastava

Swetha Garimalla

Marie-Cecile van de Lavoir

Sam Zeng

Ellen Collarini

Gerry Sann Rivera

OmniAb

THANK YOU!

Visit us at Booth #300

OmniAb.com

