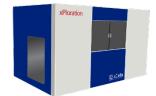
OmniAb Technology Suite

3 mniAb*

Expanding our **best-in-class** status with innovation and new technology offerings

Naturally optimized human antibodies

Recent technology additions



Antigen generation for challenging therapeutic targets

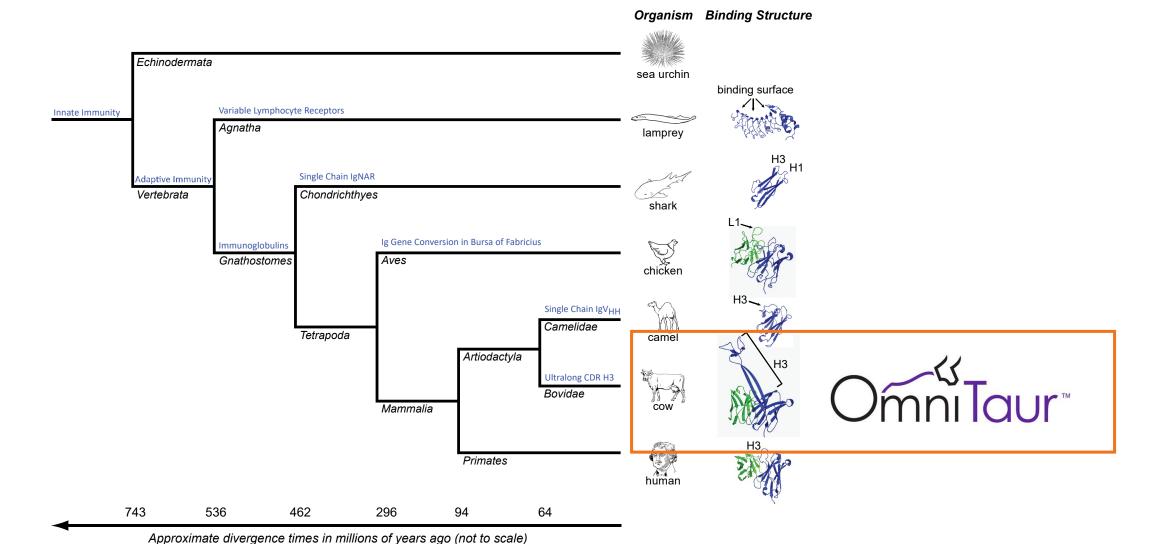
The only **four species platform**

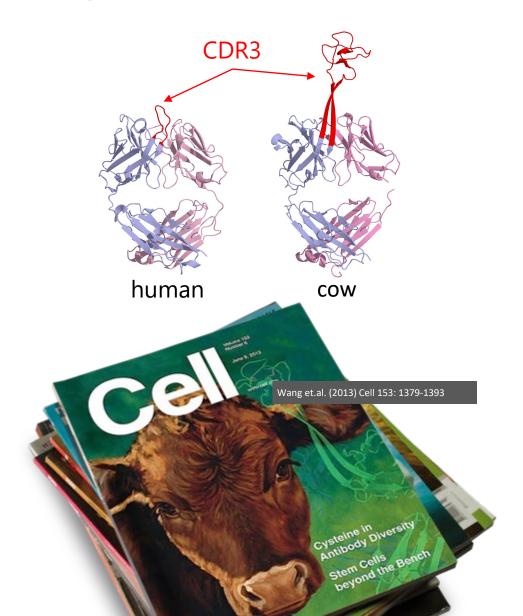
High demand for **bispecific antibodies**

Industry-first ultralong CDR-H3s

Industry-leading broadest offer

Proven success




Vaughn V. Smider M.D., Ph.D.

Novel antibody paratopes have evolved in different species

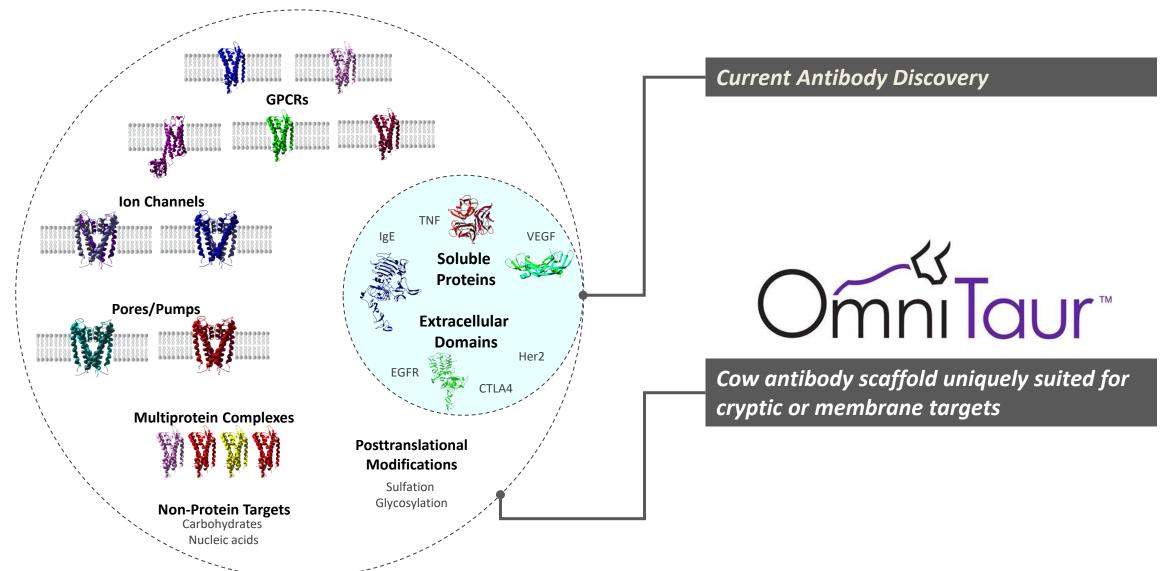
Unique cow antibody structures enable binding to challenging targets

Novel cow antibody structure

- Could enable targeting crevices, pores, channels, or other epitopes that "regular" antibodies cannot; <u>two</u> approaches:
 - 1. Cow immunization to select novel structures
 - 2. Knob engineering with bioactive peptides

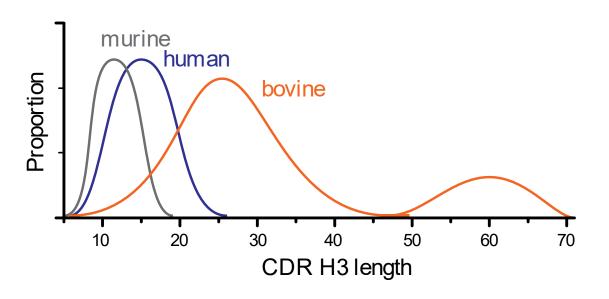
Fully humanized cow scaffold

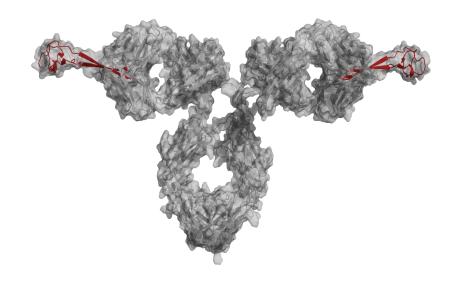
- Enables therapeutic use
- Human IgG constant region
- CDR3 region de-immunized
- Novel intellectual property


Basic science from The Scripps Research Institute and Applied Biomedical Science Institute

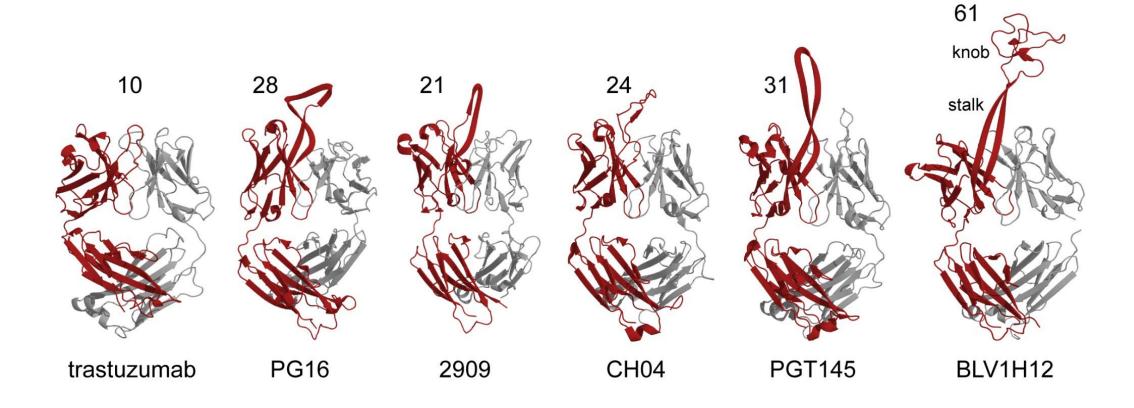
Major peer reviewed publications include:

- Wang et.al. (2013) Cell 153: 1379-1393
- Stanfield et.al. (2016) Science Immunol 1: aaf7962
- Sok et.al. (2017) Nature 548: 108-111
- Stanfield et.al. (2020) Science Advances 6: eaba0468

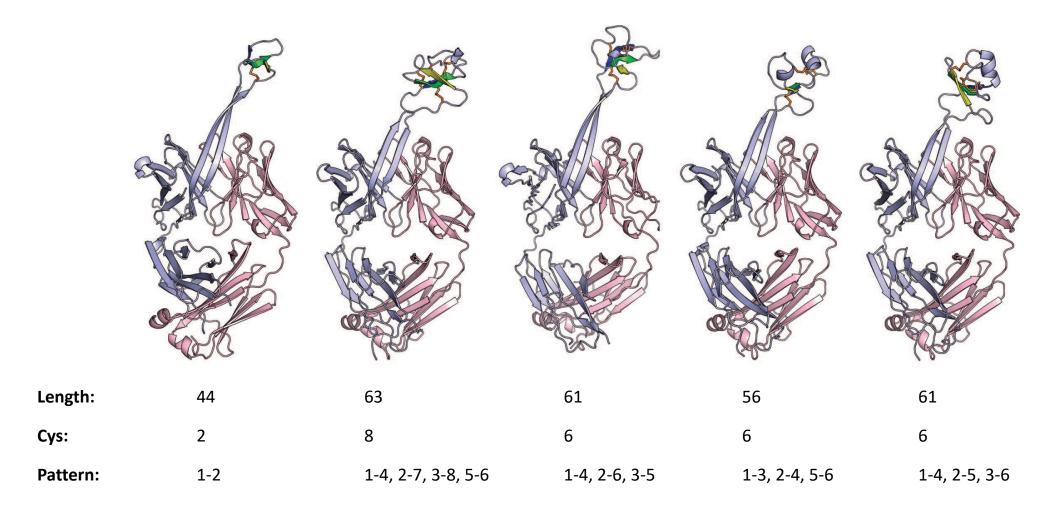



Expanding target and epitope space: a fraction of potential targets are addressed by current modalities

Why cow antibodies?

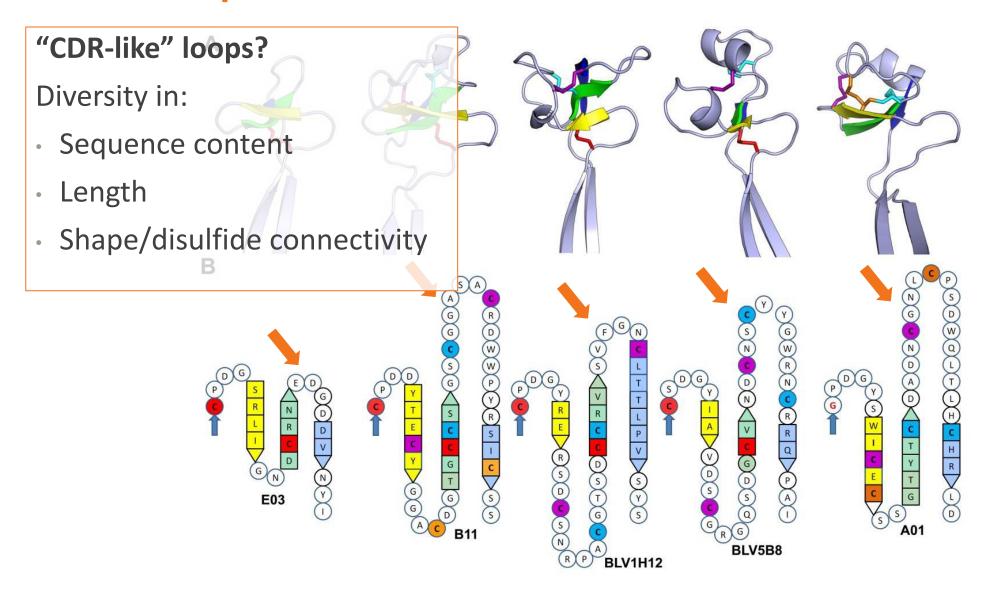


- ▼ The widest range of CDR3 length of any species
 - the longest CDR3s known (10% of the repertoire between 40-70 residues 'ultralong')
 - enhanced structural diversity
 - protruding structures for binding challenging epitopes like crevices, pores, channels, etc.
- ▼ Standardized discovery and humanization techniques
- ▼ Robust expression in CHO, HEK



Cow antibodies have the longest CDR H3s

8

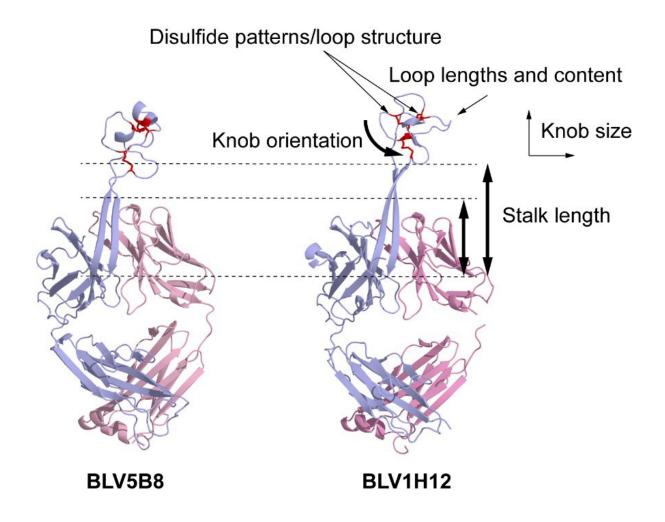

Five structures reveal conserved and diverse features of ultralong CDR H3s

Stanfield, et.al. (2016) Science Immunology: 1(1)

A conserved 3-strand core forms a scaffold for two highly diverse loops and disulfide

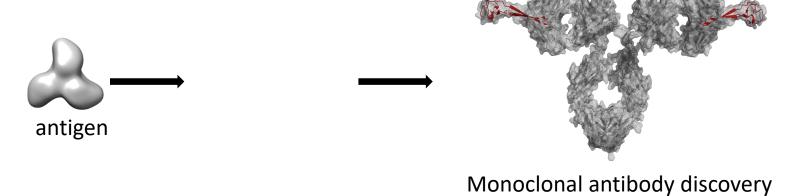
Ultralong CDR H3 sequences are enormously diverse

	$V_{\rm H}$	N(?)	$\mathtt{D}_\mathtt{H}$	\mathbf{J}_{H}	(L)
$ m V_H$ Germ $ m D_H2$ Germ $ m J_H1$ Germ	CTTVHQ		s <mark>C</mark> PDGYSYGYG <mark>C</mark> GYGYG <mark>C</mark> SGYD <mark>C</mark> YGYGGYGGYGGYGYSSYSYTYEY	YVDAW	
BLV1H12	CTSVHQ	ETKKYQ	s <mark>c</mark> pdgyrersd <mark>c</mark> snrpa <mark>c</mark> gtsd <mark>cc</mark> rvsvfgn <mark>c</mark> lttlpvsysytynyew	HVDVW	61
BLV5B8	CTTVHQ	ETRKT	CSDGYIAVDSCGRGQSDGCVNDCNSCYYGWRNCRRQPAIHSYEF	HVDAW	56
(12 cys)	CSPVHQ	EIRK	CCPAGCQCGRSCGACCGCAGDEFCGINVYGYVTCGGYRTCSCIDTYDF	YVDAW	59
(10)	CTTVHQ	KTKK	LCPNGRTCGCGCGCGCGCCTSYCDSFGCWGGRDTFGSSCTSATYTYEW	GVDAW	59
(10)	CATVHQ	HTNKK	RCPDGYEFSAGCCCGEGCSGSDCCCNSRLRCSWYEIYCSVSPSDTYEF	HVDAW	60
(8)	CSTVHQ	KTRTTQGN	TCPDGYTLKDDCPRCRGGCDGYDCCWGDACRSSGLCWGHNPLVTETYTYEF	YIDAW	66
(8)	CTTVHQ	ETHKR	C PDGYTYGYY <mark>C</mark> GYACT <mark>C</mark> SGDE C YRYDY <mark>C</mark> AAYGSLG <mark>CC</mark> TNDHTYTYEF	HVDSW	59
(6)	CTAVYQ	QTRK	S <mark>C</mark> PDGYRSGND <mark>C</mark> SSA <mark>C</mark> SCSNYE <mark>C</mark> YRYGSYGSNGK <mark>C</mark> GYDAHAYTYTYEI	HIDAW	59
(6)	CGAVHQ	KTAR	S <mark>C</mark> PNIYSTYYGGRSGSVG <mark>C</mark> SAYD <mark>C</mark> EN <mark>CC</mark> TYDGMGRYSVST <mark>C</mark> SGSVIYEF	YVDTW	60
(6)	CATKKQ	I	CCPDDSSLEVACSHGAGCSGCVGYTGGTWGTLSDYFHGKYTCTYTYEH	NVDAW	56
(5)	CTIVHQ	QTTK	RCPDDDNYPYWCSVANGGGSDACYGCSGRSSDTFWRCSTVRYRYTYEW	HVDAW	59
(6)	CATVHQ	LTRA	HCPDDYSYLYTSRWDCASCDDGCYAARDWRGCFDCESSKTSVSYIYEH	HVNAW	59
(8)	CATVHQ	RTEK	S <mark>C</mark> SAGHIDGVQ <mark>CCC</mark> SGVA <mark>C</mark> DGAG <mark>C</mark> VRG <mark>C</mark> SYGTDGWYGW <mark>C</mark> NRYSYTITYEF	YVTAW	61
(4)	CTTVHQ	RTKR	SCPDDYTYTYTCVSESDHQAERGCYGPGGYGWCDWTGSTTVSREGERNNYEF	HIDAW	63
(6)	CTTVHQ	ITHK	E <mark>C</mark> PDGYSDG <mark>C</mark> TCTRSWYYSGWN <mark>C</mark> YPGEV <mark>C</mark> WSRGG <mark>C</mark> GISGVTYSDTYEF	YIDAW	59
(8)	CGTVHQ	HTTTKN	TCPDGYTFRAGCCCSSGCISCDSSICDNTSPSWFCSRTSPTYTYTYEF	YITAW	61
(6)	CATVHQ	KTLEK	TCPDGYAYGDTDNGHCSAYDCWRMGTYCTEDMYGCSCYSGTTTYEW	YVEAW	58
(6)	CATVHQ	EVQKK	T <mark>C</mark> PDGYAHLGF <mark>C</mark> NDDDGRLGSA <mark>CC</mark> SGGAFGSDGDTD <mark>C</mark> H <mark>C</mark> YSDSYNYEN	HVDEW	60
(6)	CSTVHQ	KTQR	S <mark>C</mark> PDGYRTGYG <mark>C</mark> DDGS <mark>CC</mark> SGSN <mark>C</mark> YSYLSRINRGT <mark>C</mark> RTKITTYEH	HIDAW	55
(7)	CTTVHQ	ETKTRS	TCPDGYGCTVGCYYGTYSCSGSDCTCSRIRRVYGATGGLSICTSTHTYEW	HVDTW	63
(4)	CTTVHQ	RTTTER	S <mark>C</mark> PEGYNWRYG <mark>C</mark> DGWVRG <mark>C</mark> SDA <mark>C</mark> WTGDTDGARGEYGGDGSVRTSYEW	YADA <mark>w</mark>	60
(6)	CTTVHQ	KTQR	TCPDGWTDIWDCCRKSTCSGSDCPTNDDCRLIFPYAWSTTYLYTYEH	HVDTW	58


Loops within ultralong CDR H3s may be CDRs themselves

CDR = Complementarity Determining Region

Cow antibodies have unique structural diversity



Stanfield, et al. (2017) *Adv Immunol*, 137: 135 Wang et.al. (2013) *Cell* 153: 1379-1393

OmniTaur discovery platforms

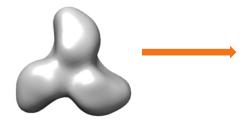
- **▼** Immunization
 - Single-cell VH and VL cloning, expression
 - Phage display

▼ Customized "knob" engineering (libraries, bioactive peptides, etc.)

Cow antibodies with ultralong CDR3s can target the challenging antigen, HIV gp120

LETTER

doi:10.1038/nature23301

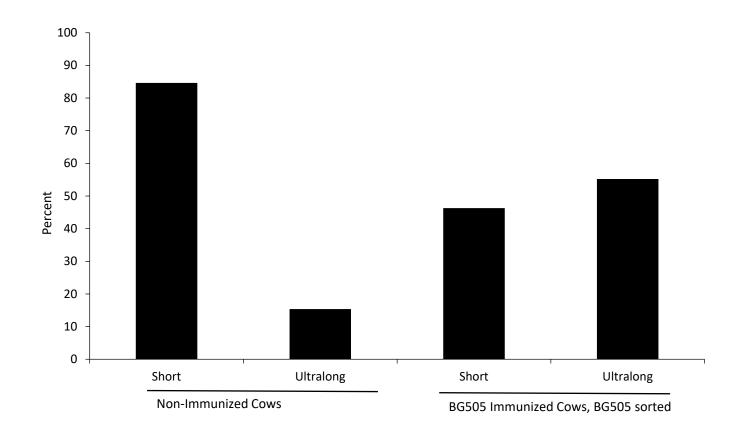

Rapid elicitation of broadly neutralizing antibodies to HIV by immunization in cows

Devin Sok^{1,2,3,4}*, Khoa M. Le^{1,2,3,4}*, Melissa L. Vadnais⁵, Karen L. Saye-Francisco^{1,2,3}, Joseph G. Jardine^{1,2,3}, Jonathan L. Torres⁶, Zachary T. Berndsen⁶, Leopold Kong⁶, Robyn Stanfield⁶, Jennifer Ruiz^{1,2,3,4}, Alejandra Ramos^{1,2,3,4}, Chi-Hui Liang^{1,2,3}, Patricia L. Chen⁷, Michael F. Criscitiello⁷, Waithaka Mwangi⁸, Ian A. Wilson^{2,3,6}, Andrew B. Ward^{2,3,6}, Vaughn V. Smider⁵ & Dennis R. Burton^{1,2,3,9}

Sok et.al. (2017) Nature 548: 108-111

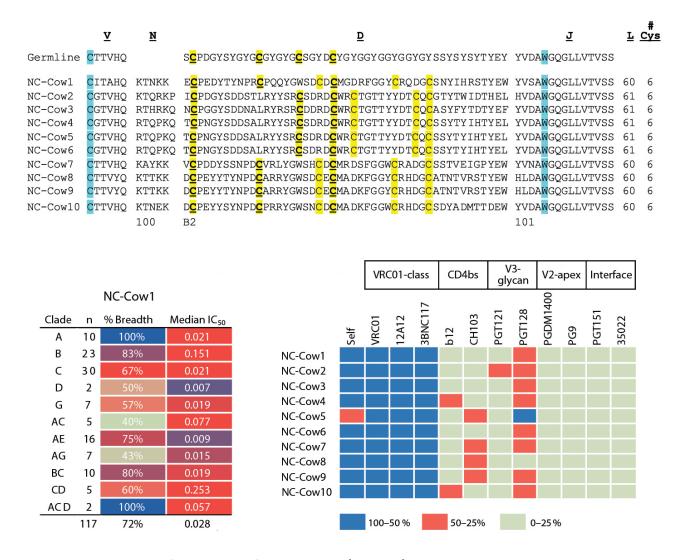
Can cows develop broadly neutralizing antibodies against HIV?

HIV gp120 (BG505 Env) Neutralizing
Antibodies?

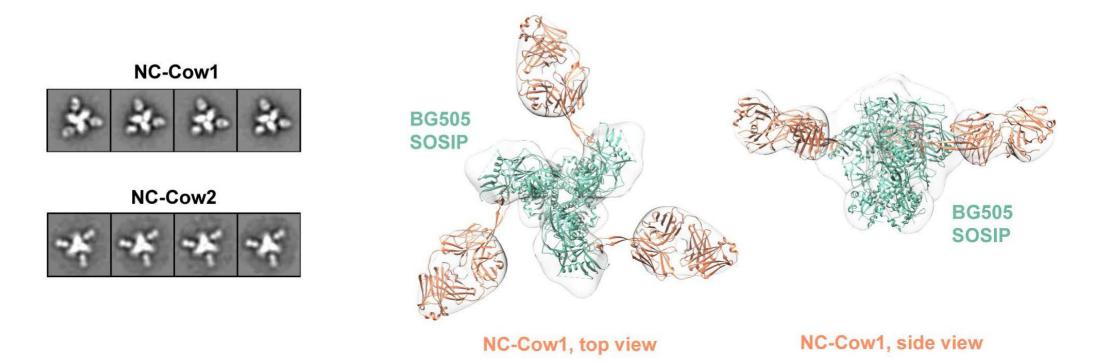

Serum Neutralization Breadth Against Multiple HIV-1 strains

	Percent breadth					Median ID ₅0			
Clade	n	D42	D77	D238	D381	D42	D77	D238	D381
Α	10	60%	90%	100%	100%	265	389	5796	5635
В	23		70%	100%	100%		47	192	233
C	30	13%	93%	97%	97%	63	148	791	600
D	2		100%	100%	100%			162	263
G	7	14%	43%	71%	86%	38	25	1144	342
AC	5	80%	100%	100%	100%	44	163	1539	1742
ΑE	16	6%	44%	75%	88%	116	68	897	469
AG	7	43%	86%	86%	86%	25	94	942	1004
BC	10	20%	100%	100%	100%	114	261	993	1101
CD	5	20%	80%	80%	100%	25	112	504	253
ACD	2	50%	100%	100%	100%	25	88	9873	12181
	117	20%	79%	92%	96%	62	108	671	595
Percent neutralization Neutralization ID 50 (1/dilution)									
0 25% 50% 75% 100% 0 100 500 1000 5000									

Sok, D. et al. *Nature* (2017) 548: 108



Ultralong CDR H3s were selected


Monoclonal antibodies utilize ultralong CDR H3s

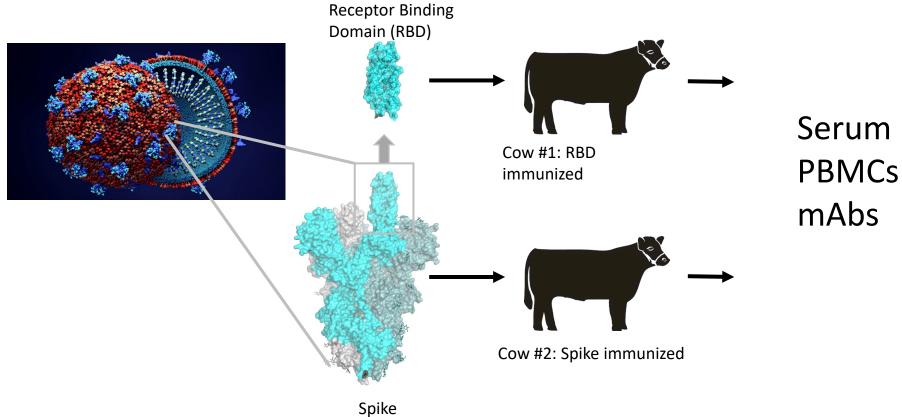
Sok, D. et al. *Nature* (2017) 548: 108



NC-Cow1 binds the CD4 binding site

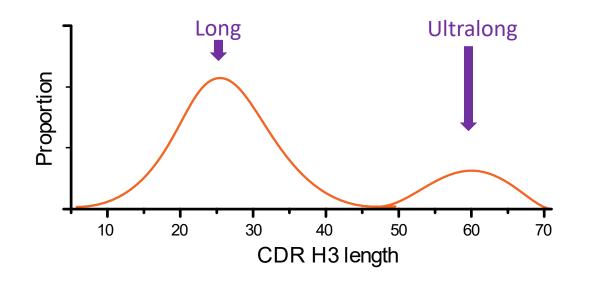
Sok, D. et al. *Nature* (2017) 548: 108

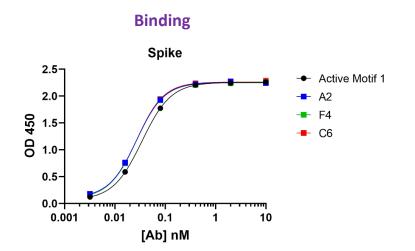
NC-Cow1 Ultralong CDR H3 Binds the Recessed CD4 Epitope on HIV Env

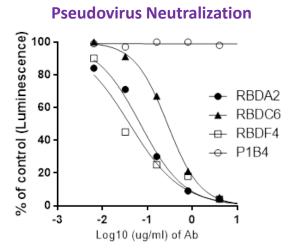

Stanfield, et.al. Sci Adv (2020) 6(20): eaba0468.

Cow antibodies with ultralong CDR H3s have very high affinity

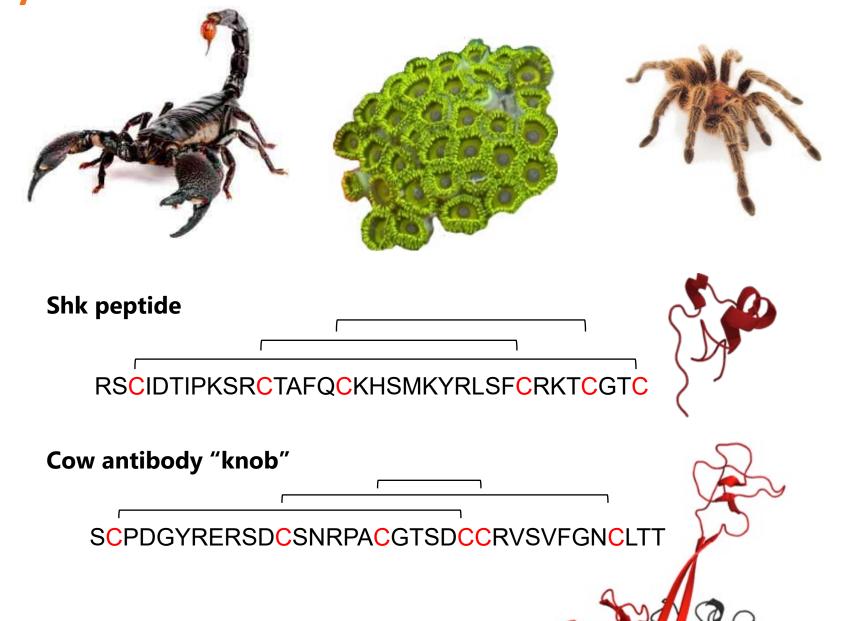
<u>lgG</u>	K _D (M)	k _a (1/Ms)	k _d (1/s)
NC-Cow-1	4.198x10 ⁻¹²	5.592x10 ⁵	2.347x10 ⁻⁶
P1F1	4.640x10 ⁻¹¹	6.508x10 ⁶	3.020x10 ⁻⁴
P3H4	1.237x10 ⁻¹⁰	1.315x10 ⁶	1.626x10 ⁻⁴
P4F8	9.987x10 ⁻¹²	2.459x10 ⁶	2.456x10 ⁻⁵
P4G8	1.345x10 ⁻¹¹	1.829x10 ⁶	2.460x10 ⁻⁵

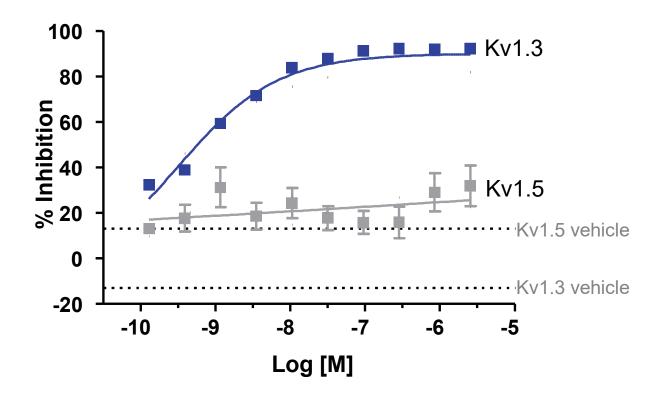

Cow anti-coronavirus SARS-CoV-2 antibodies



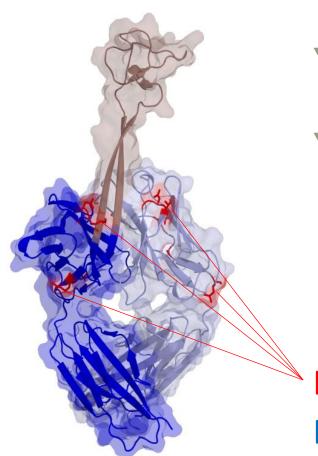

Two human "common cold" coronaviruses evolved after species transfer from cow (BCoV) to humans

Cow anti-SARS-CoV-2 antibody discovery





Natural peptides that inhibit ion channels are similar to cow antibody "knob" domains



An engineered cow antibody specifically inhibits the ion channel Kv1.3

Electrophysiology, IC₅₀ ~ 140-310 pM

Cow antibody humanized scaffold

- ▼95% identical to human germline outside CDR H3 (heavy chain)
- ▼90% identical to human germline (light chain)

Red = stabilizing cow residues
Blue = human

OmniTaur Intellectual Property

- ▼ 22 granted or issued patents internationally
- ▼ Broad coverage of ultralong CDR H3 antibody compositions and sequences
- ▼ Key compositions and motifs enabling humanized scaffolds
- ▼ Internal Patents acquired from Taurus Biosciences and the Scripps Research Institute
- ▼ 12 pending patents

Summary

- ▼OmniTaur is a cutting-edge antibody platform based on the novel long CDR H3 structure of humanized cow antibodies
 - Challenging targets/epitopes
- ▼ Discovery can occur through immunization and
 - Single-cell PCR of VH and VL, expression, and screening
 - Phage Display
- ▼ The knob domain is independently folding and similar in size and shape to ion channel-inhibiting bioactive peptides (e.g. venoms, toxins)
 - "Knobs" can be replaced by bioactive peptides and retain ion channel inhibiting properties

OmniAb® Platform

Single license provides access to full suite of discovery technologies

- Ab Initio Antigen proprietary methods for purifying multi-Tm and other difficult proteins for immunization and screening
- OmniRat®, OmniMouse®, and OmniChicken® 3 different species engineered to generate novel fully human antibodies
- OmniFlic® and OmniClic™ engineered rat and chicken for fully human bispecific antibodies
- OmniTaur™ cow-inspired ultralong H3 antibodies with humanized framework
- xPloration® and GEM robust single B cell screening technologies to enable deep searches into immune repertoires to identify unique antibodies with special properties

Naturally Optimized Human Antibodies®

OmniAb partners enjoy evergreen access to the most comprehensive and cutting-edge suite of antibody discovery technologies available

Acknowledgements

Smider Lab / ABS Institute

Current

Riqui Huang

Jeremy Haakenson

Gabrielle Warner

Duncan McGregor

Abigail Kelley

Biura Markanian

Gorune Gorolian

Recent

Melissa Vadnais

Jason Higa

Erik Wold

Wenyong Tong

Veronica Verplancken

Applied
Biomedical
Science Institute

Funding: NIH, DoD, American

Cancer Society, USDA

Collaborators

Scripps

Dennis Burton

Devin Sok

Khoa Le

Karen Saye-Francisco

Joseph Jardine

Jennifer Ruiz

Alejandro Ramos

Chi-Hui Lang

Ian Wilson

Robyn Stanfield

Damien Eckiert

Wenli Yu

Leopold Kong

Andrew Ward

Jonathan Torres

Ali Torkamani

Peter Schultz

Feng Wang

Texas A&M

Michael Criscitiello

Thad Deiss

Patricia Chen

AM

Kansas State University

Waithaka Mwangi

K.C. Cheong

Fabrus/Sevion

Helen Mao

Miguel de los Rios

Cory Bentley

Omar Bazirgan

Jacek Ostrowski

Evan Holmes

Thank you!

