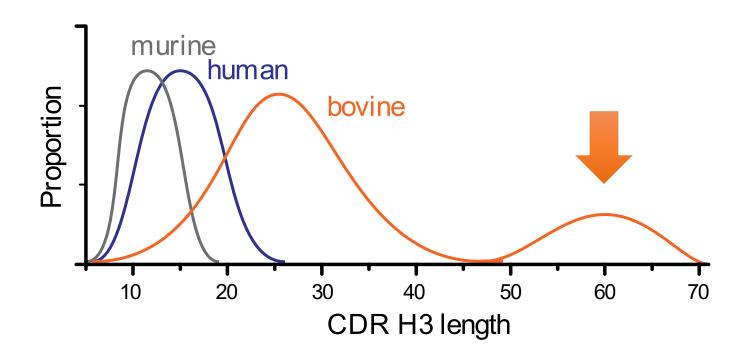


Discovery, Expression, and Characterization of Neutralizing Picobodies against SARS-CoV2

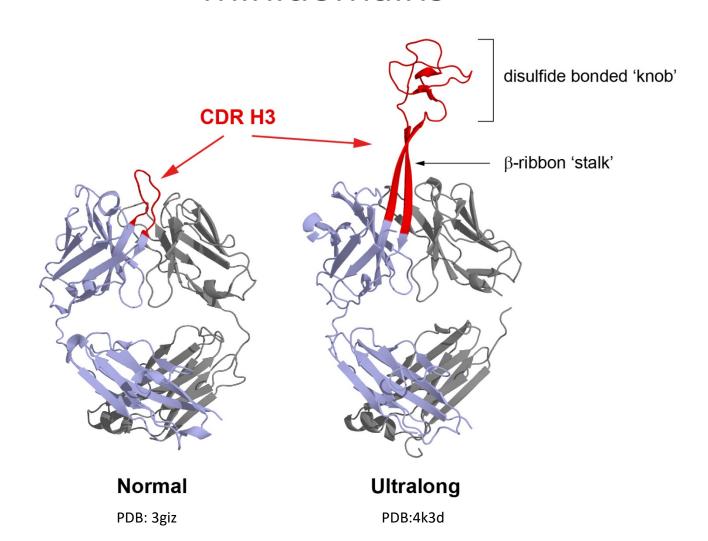
Antibody Engineering and Therapeutics

Dec. 13, 2021

Vaughn Smider, M.D., Ph.D.

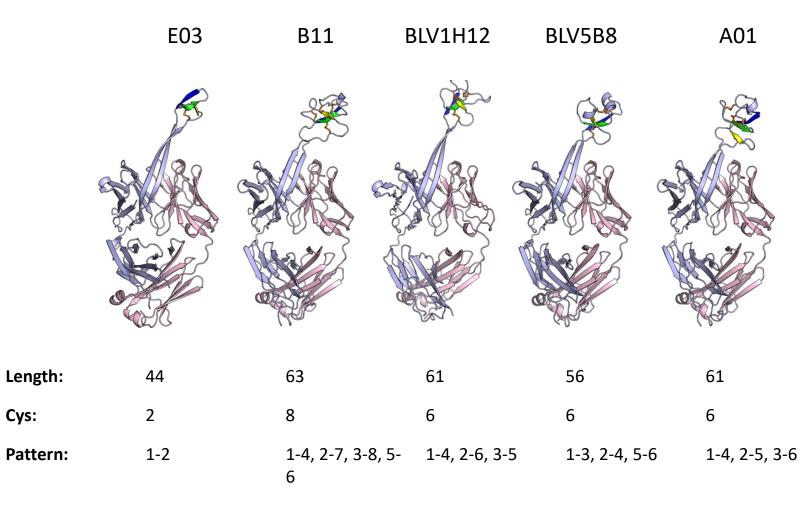

President

Applied Biomedical Science Institute



Cows have long CDR H3s, with an <u>ultralong</u> subset (40-70 amino acids)

Cow ultralong CDR H3s have protruding 'stalk' and 'knob' minidomains



Applied
Biomedical
Science Institute

Stanfield, et al. (2017) Adv Immunol, 137: 135

Wang et.al. (2013) Cell 153: 1379-1393

Structures reveal conserved and diverse features of ultralong CDR H3s

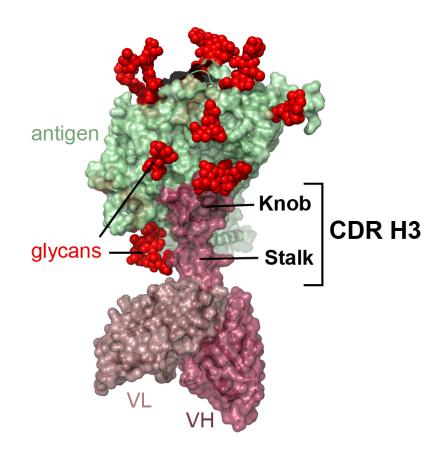
Cys:

Ultralong CDR H3 sequences are enormously diverse

	$V_{\rm H}$	N(?)	$\mathtt{D}_\mathtt{H}$	\mathbf{J}_{H}	(L)
V _H Germ D _H 2 Germ J _H 1 Germ	CTTVHQ		s <mark>c</mark> pdgysygyg <mark>c</mark> gygyg <mark>c</mark> sgyd <mark>c</mark> ygyggyggyggygssysysytyey	WADVY	
BLV1H12	C TSVHQ	ETKKYQ	S <mark>C</mark> PDGYRERSD <mark>C</mark> SNRPA <mark>C</mark> GTSD <mark>CC</mark> RVSVFGN <mark>C</mark> LTTLPVSYSYTYNYEW	HVDVW	61
BLV5B8	CTTVHQ	ETRKT	CSDGYIAVDSCGRGQSDGCVNDCNSCYYGWRNCRRQPAIHSYEF	HVDAW	56
(12 cys)	CSPVHQ	EIRK	CCPAGCQCGRSCGACCGCAGDEFCGINVYGYVTCGGYRTCSCIDTYDF	YVDAW	59
(10)	CTTVHQ	KTKK	LCPNGRTCGCGCGCGCGCCTSYCDSFGCWGGRDTFGSSCTSATYTYEW	GVDAW	59
(10)	CATVHQ	HTNKK	RCPDGYEFSAGCCCGEGCSGSDCCCNSRLRCSWYEIYCSVSPSDTYEF	HVDAW	60
(8)	CSTVHQ	KTRTTQGN	TCPDGYTLKDDCPRCRGGCDGYDCCWGDACRSSGLCWGHNPLVTETYTYEF	YIDAW	66
(8)	CTTVHQ	ETHKR	C PDGYTYGYY <mark>C</mark> GYA <mark>CTCSGDECYRYDY<mark>C</mark>AAYGSLG<mark>CC</mark>TNDHTYTYEF</mark>	HVDSW	59
(6)	CTAVYQ	QTRK	S <mark>C</mark> PDGYRSGND <mark>C</mark> SSA <mark>C</mark> SCSNYE <mark>C</mark> YRYGSYGSNGK <mark>C</mark> GYDAHAYTYTYEI	HIDAW	59
(6)	CGAVHQ	KTAR	S <mark>C</mark> PNIYSTYYGGRSGSVG <mark>C</mark> SAYD <mark>C</mark> EN <mark>CC</mark> TYDGMGRYSVST <mark>C</mark> SGSVIYEF	YVDTW	60
(6)	CATKKQ	I	CCPDDSSLEVACSHGAGCSGCVGYTGGTWGTLSDYFHGKYTCTYTYEH	NVDAW	56
(5)	CTIVHQ	QTTK	RCPDDDNYPYWCSVANGGGSDACYGCSGRSSDTFWRCSTVRYRYTYEW	HVDAW	59
(6)	CATVHQ	LTRA	H <mark>C</mark> PDDYSYLYTSRWD <mark>C</mark> ASCDDG <mark>C</mark> YAARDWRG <mark>C</mark> FD <mark>C</mark> ESSKTSVSYIYEH	HVNAW	59
(8)	CATVHQ	RTEK	S <mark>C</mark> SAGHIDGVQ <mark>CCC</mark> SGVA <mark>C</mark> DGAG <mark>C</mark> VRG <mark>C</mark> SYGTDGWYGW <mark>C</mark> NRYSYTITYEF	YVTAW	61
(4)	CTTVHQ	RTKR	SCPDDYTYTYTCVSESDHQAERGCYGPGGYGWCDWTGSTTVSREGERNNYEF	HIDAW	63
(6)	CTTVHQ	ITHK	E <mark>C</mark> PDGYSDG <mark>C</mark> TCTRSWYYSGWN <mark>C</mark> YPGEV <mark>C</mark> WSRGG <mark>C</mark> GISGVTYSDTYEF	YIDAW	59
(8)	CGTVHQ	HTTTKN	TCPDGYTFRAGCCCSSGCISCDSSICDNTSPSWFCSRTSPTYTYTYEF	YITAW	61
(6)	CATVHQ	KTLEK	TCPDGYAYGDTDNGHCSAYDCWRMGTYCTEDMYGCSCYSGTTTYEW	YVEAW	58
(6)	CATVHQ	EVQKK	T <mark>C</mark> PDGYAHLGF <mark>C</mark> NDDDGRLGSA <mark>CC</mark> SGGAFGSDGDTD <mark>C</mark> H <mark>C</mark> YSDSYNYEN	HVDEW	60
(6)	CSTVHQ	KTQR	S <mark>C</mark> PDGYRTGYG <mark>C</mark> DDGS <mark>CC</mark> SGSN <mark>C</mark> YSYLSRINRGT <mark>C</mark> RTKITTYEH	HIDAW	55
(7)	CTTVHQ	ETKTRS	TCPDGYGCTVGCYYGTYSCSGSDCTCSRIRRVYGATGGLSICTSTHTYEW	HVDTW	63
(4)	CTTVHQ	RTTTER	S <mark>C</mark> PEGYNWRYG <mark>C</mark> DGWVRG <mark>C</mark> SDA <mark>C</mark> WTGDTDGARGEYGGDGSVRTSYEW	YADA <mark>w</mark>	60
(6)	CTTVHQ	KTQR	TCPDGWTDIWDCCRKSTCSGSDCPTNDDCRLIFPYAWSTTYLYTYEH	HVDTW	58

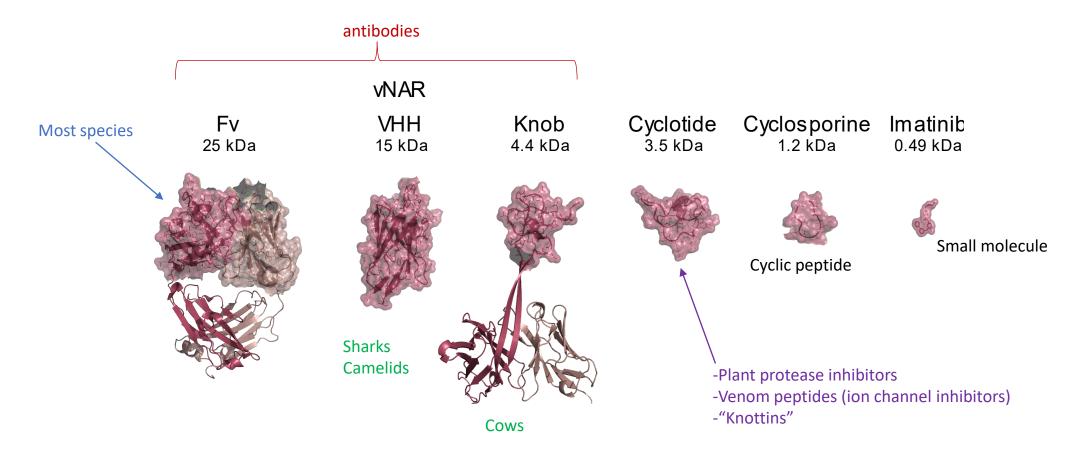
Cows are the only species that can rapidly produce broadly neutralizing antibodies against HIV

LETTER


doi:10.1038/nature23301

Rapid elicitation of broadly neutralizing antibodies to HIV by immunization in cows

Devin Sok^{1,2,3,4}*, Khoa M. Le^{1,2,3,4}*, Melissa L. Vadnais⁵, Karen L. Saye-Francisco^{1,2,3}, Joseph G. Jardine^{1,2,3}, Jonathan L. Torres⁶, Zachary T. Berndsen⁶, Leopold Kong⁶, Robyn Stanfield⁶, Jennifer Ruiz^{1,2,3,4}, Alejandra Ramos^{1,2,3,4}, Chi-Hui Liang^{1,2,3}, Patricia L. Chen⁷, Michael F. Criscitiello⁷, Waithaka Mwangi⁸, Ian A. Wilson^{2,3,6}, Andrew B. Ward^{2,3,6}, Vaughn V. Smider⁵ & Dennis R. Burton^{1,2,3,9}


Sok et.al. (2017) Nature 548: 108-111

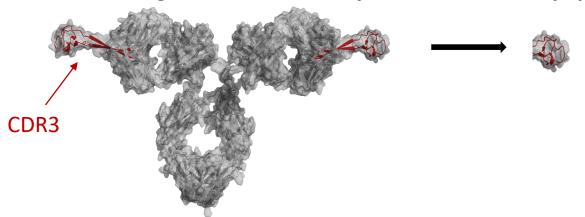
NC-Cow1 Ultralong CDR H3 binds the recessed CD4 epitope on HIV Env



Target binding domains of biologics and small molecules

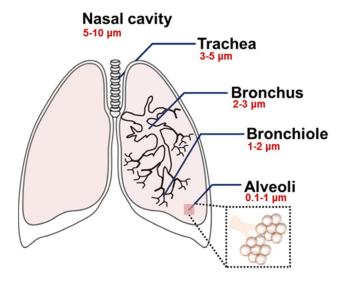
Cow antibody "knob" peptides are the smallest independent antigen binding domain

Can we produce knobs independently of the antibody?

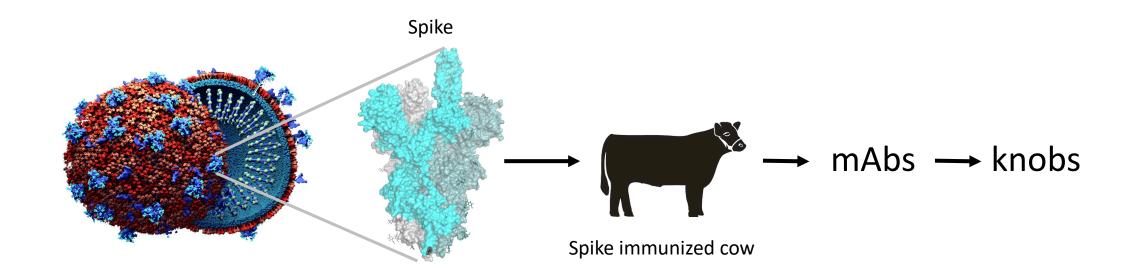


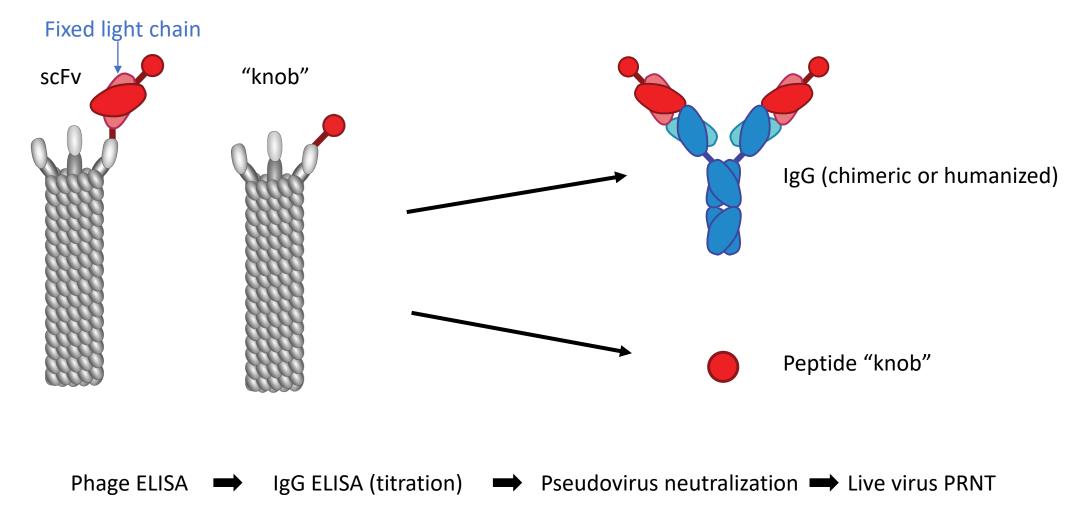
Applied
Biomedical
Science Institute

Features of cow antibody-derived peptide (picobody) knobs


Ultralong CDR3 cow antibody

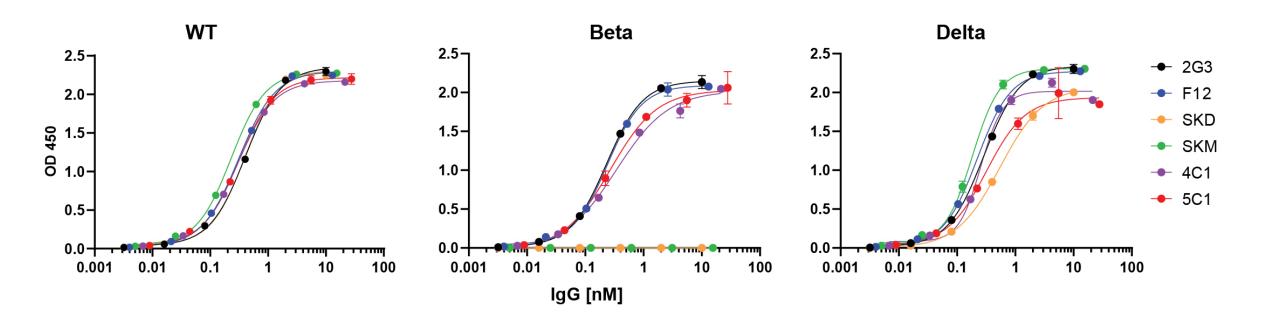
"knob" peptide



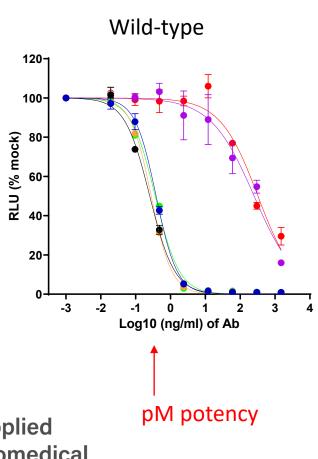

- ■Better tissue penetration, alveolar delivery
- Target binding high affinity and epitope coverage, like antibodies
- Stable and Developable
 - Rigid disulfide-bonded small domain
 - Avoids aggregates seen in nanobodies and other immunoglobulin domain-based fragments
 - ■High yield in *E.coli*
- Simple, immunization-based discovery platform
 - Peptide structural diversity far greater than any in vitro display-based platform
 - Rapid "hit" discovery
 - Each knob has its own novel disulfide-bonded structure

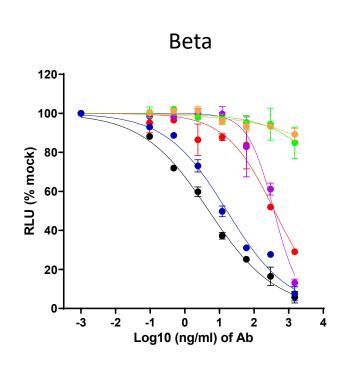
Discovery of cow anti-coronavirus antibodies

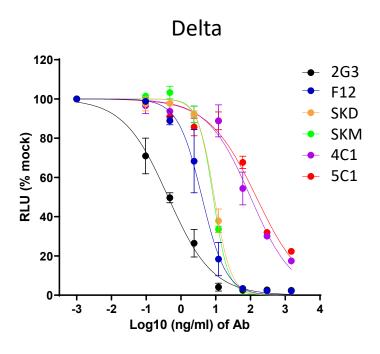
A novel phage display system to discover antibodies and knobs


Ultralong CDR H3s bind SARS-CoV-2 variants

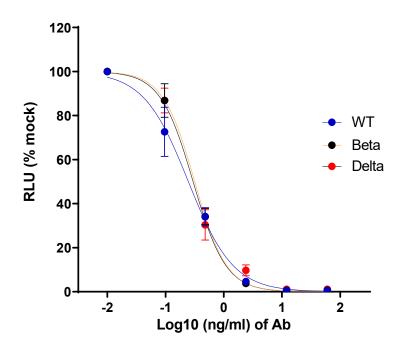
	<u>v</u>	<u>N</u>	<u>D</u>	<u>J</u>	<u>L</u>	#Cys	<u>Epitope</u>
Germ	<mark>C</mark> TTVHQ		S <mark>C</mark> PDGYSYGYG <mark>C</mark> GYGYG <mark>C</mark> SGYD <mark>C</mark> YGYGGYGGYGGYGYSSYSYTYEY	YVDAW			
SKD	<mark>C</mark> TTVHQ	RTSEKR	S <mark>C</mark> PGGSSRRYPSGAS <mark>C</mark> DVSGGA <mark>C</mark> ACYVSN <mark>C</mark> RGVL <mark>C</mark> PTLNEIVAYTYEW	HVDA <mark>w</mark>	61	6	RBD
SKM	<mark>C</mark> TTVHQ	ETLR	S <mark>C</mark> PDGYIDNSG <mark>C</mark> TADWG <mark>C</mark> AALD <mark>C</mark> WRRRFGYHSTDPSHYTGATYIYTYSL	HIDAW	60	4	RBD
4C1 5C1 3A3	<mark>C</mark> ATVHQ CATVHQ CATVHQ	KTRKEK KTRKEK KTRKEK	N <mark>C</mark> PDGYIYSSNTASGYD <mark>C</mark> GVWI <mark>C</mark> RRVGSAFCSRTGDYTSPSEFDIYEF S <mark>C</mark> PDGYLYSSNTGRGYD <mark>C</mark> GVWT <mark>C</mark> RRVGGEFCSATGDWTSPSEEDFYEF N <mark>C</mark> PDGYIYSSNITSGFD <mark>C</mark> GVWI <mark>C</mark> RRVGSAFCSRTGDYTSPTELDIYEF	YVEG <mark>w</mark> YVDT <mark>w</mark> YVEG <mark>w</mark>	61 61 61	4 4 4	spike spike spike
F12 2G3	<mark>C</mark> ATVDQ <mark>C</mark> ATVHQ	KTKN KTAEGDK	A <mark>C</mark> PDDFDYR <mark>C</mark> S <mark>C</mark> IGG <mark>C</mark> GRKG <mark>C</mark> VGPL <mark>CC</mark> RSDLGGYLTDSPAYIYEW T <mark>C</mark> PDGYEHT <mark>C</mark> GCIGGCGCKRSA <mark>C</mark> IGAL <mark>CC</mark> QASLGGWLSDGETYTYEF	YIDL <mark>W</mark> HVDT <mark>W</mark>	58 61	8 8	RBD RBD
2D9	<mark>C</mark> AIVQQ	ITHK	T <mark>C</mark> PNGYNWFDR <mark>CC</mark> SWDGT <mark>C</mark> GDG <mark>CC</mark> SNRAWPSGNGRADSSIGETYGYEF	HVAA <mark>W</mark>	59	6	RBD

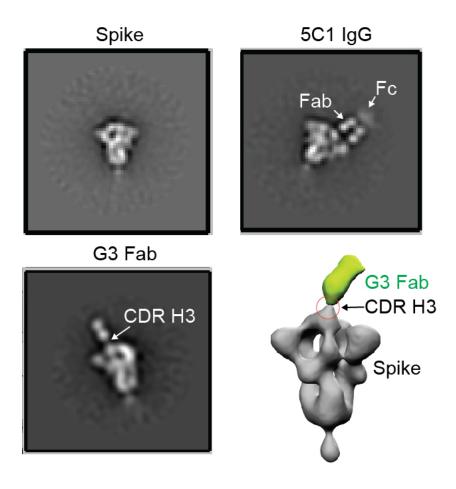

Selected on Beta (later)


Most antibodies cross-react with SARS-CoV-2 variant strains


SKD and SKM completely lose binding against beta

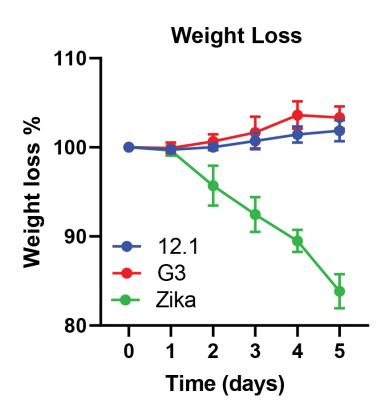
Ultralong CDR H3 antibodies maintain neutralization activity against SARS-CoV-2 variant strains

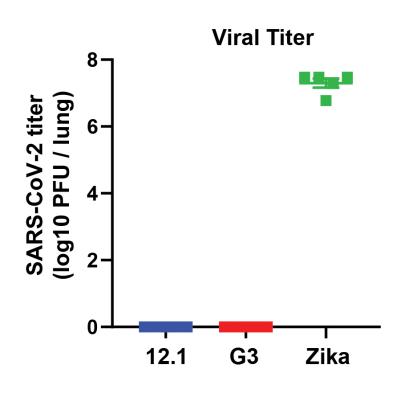




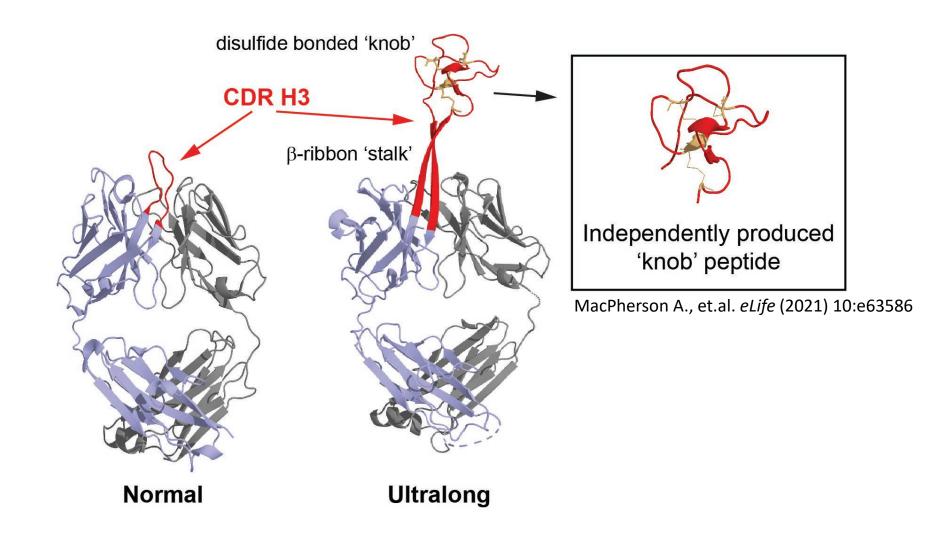
K.C. Cheong lab, KSU

2D9 (selected on beta) is equally active against wt, beta, and delta variants

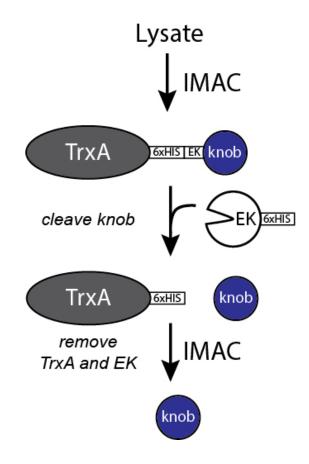

Preliminary structural biology – EM

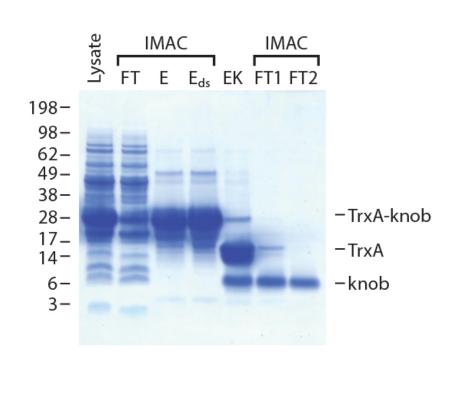


Andrew Ward lab, Scripps Research

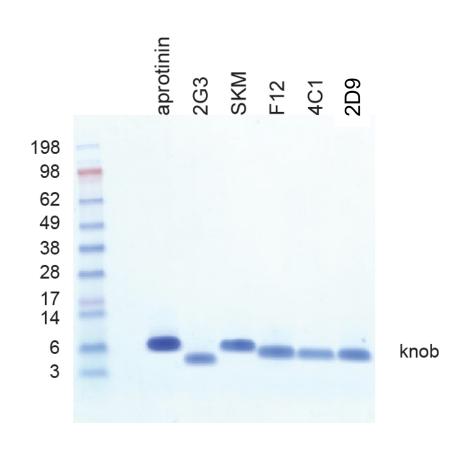

2G3 prevents SARS-CoV-2 infection in vivo

single IP dose before infection, K18 ACE2 Tg model

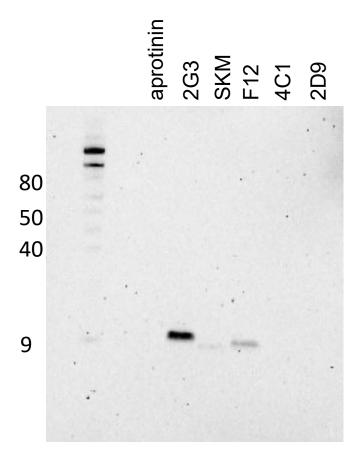




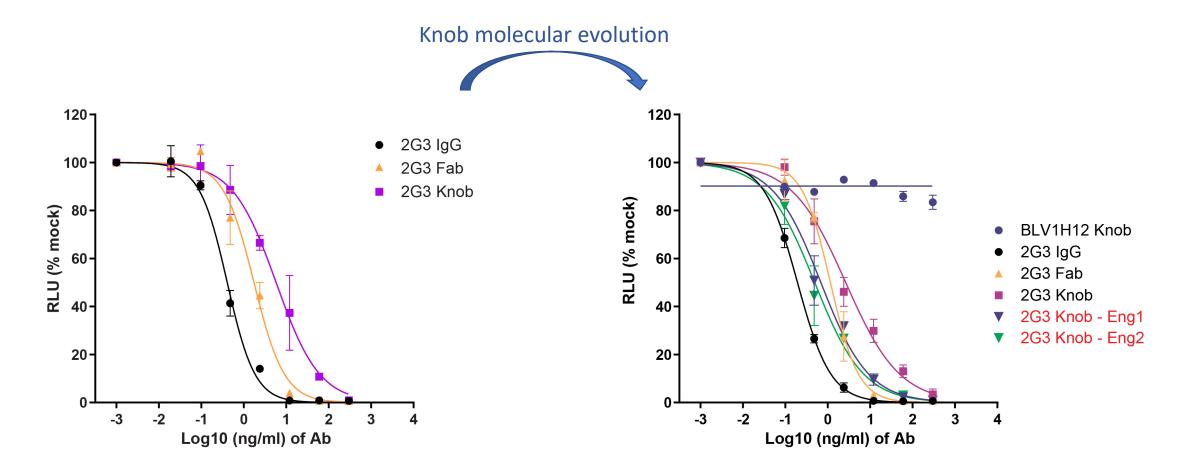
Can we produce knobs independently of the antibody?



A straightforward, scalable, knob production process in *E.coli*



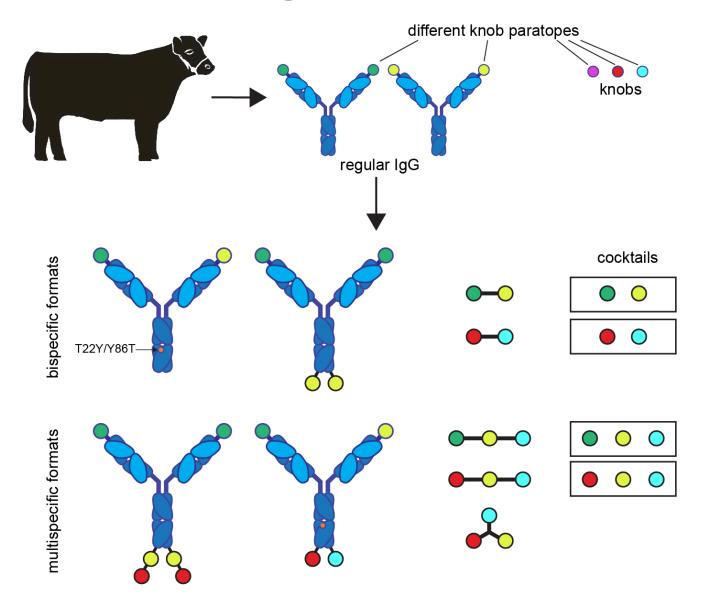
Purified knobs- some knobs are stable to heat and SDS



SDS-PAGE Coomassie (+DTT)

Modified western detected with biotinylated RBD (-DTT)

Independently expressed "knobs" neutralize SARS-CoV-2



Next steps

- Define start and end of knobs (Gabrielle Warner poster)
- Stability studies (serum, proteases, pH, etc.), oral availability?
- Intranasal/inhaled animal model(s)
- PK, PD, Production process, scale (Dianne Retallack next!)
- More knobs against emerging strains, cross coronavirus neutralization
- Novel bispecific construction

See Ruiqi Huang's poster too!

Picobodies as building blocks for novel therapeutics

Conclusions

- We have discovered extremely potent (pM) antibodies targeting coronavirus SARS-CoV-2
 - 2G3, F12, 2D9 (very potent) cross-react with SA strains
 - 4C1, 5C1 (less potent, still ~nM) cross-react with SARS-CoV-1
- Most potent mAbs have "ultralong" CDR H3 regions (>60 amino acids)
- "Knob" regions of CDR H3s can be produced as independent peptides ("picobodies")
 - Expression in *E.coli* rapid and scalable process
 - Retain binding and activity
- Standard discovery system applicable to any target

Acknowledgements

Smider Lab / ABS Institute

Applied
Biomedical
Science Institute

Riqui Huang

Gabrielle Warner

Duncan McGregor

Abigail Kelley

Alexandra Stambaugh

Jeremy Haakenson

Scripps

<u>Dennis Burton</u> Devin Sok Fangzhu Zhao

<u>Ian Wilson</u> Robyn Stanfield

Andrew Ward
Jonathan Torres
Abigail Jackson

John Teijaro

Kansas State University

Waithaka Mwangi

K.C. Cheong Yunjeong Kim

Ligand

Bill Harriman
Philip Leighton
Sam Zeng

Funding: NIH, USDA

Applied
Biomedical
Science Institute

Thank You!

https://www.omniab.com/

Applied Biomedical Science Institute

https://absinstitute.org/